85 research outputs found

    Archaeal and bacterial glycerol dialkyl glycerol tetraether (GDGT) lipids in environmental samples by high temperature-gas chromatography with flame ionisation and time-of-flight mass spectrometry detection

    Get PDF
    Archaeal isoprenoidal glycerol dibiphytanyl glycerol tetraether lipids (iGDGTs) and their non-isoprenoidal branched bacterial analogues (brGDGTs) have widespread applications in biogeochemistry and paleothermometry. Analysis of GDGTs usually involves separation using high performance liquid chromatography, typically coupled via atmospheric pressure chemical ionisation to mass spectrometric detection in selected ion-monitoring mode (HPLC–APCI-MS). However, reliable determination of ratios and, in particular, quantification by this technique, can be challenging due to differences in ionisation efficiencies of the various compounds. Quantification of GDGTs also relies on external calibration of the relative response to an internal standard with authenticated GDGTs, which are often not readily accessible. Here, we tested the suitability of high temperature gas chromatography with flame ionisation detection (HTGC-FID) for the determination of concentrations and tetraether lipid-based ratios in marine and terrestrial samples. For this, we identified GDGTs in environmental samples using HTGC coupled to time-of-flight mass spectrometry (HTGC–MS). Using a purified GDGT standard, we show we can quantify GDGT-0 in environmental samples by GC-FID. Some GDGT-based ratios measured by HTGC-FID exhibited a linear correlation (1:1) with ratios derived from HPLC–MS and weight-based ratios of mixtures of purified standards. However, ratios relying on minor isomers, such as TEX86 and MBT/CBT have many unresolved challenges for determination by HTGC. Detection limits were higher than for HPLC–MS. However, the advantages of employing HTGC-based methods include: (1) the independence from MS tuning-related differences in ionisation energies; (2) the potential for direct comparison with other, non-GDGT based biomarkers; and (3) a more complete insight into biomarker distributions in environmental samples by the extension of the temperature range. Quantitative elution of GDGTs from a HTGC column as demonstrated herein, will also enable their analysis by compound-specific isotope ratio mass spectrometry

    Chemical Diversity and Complexity of Scotch Whisky as Revealed by High-Resolution Mass Spectrometry

    Get PDF
    Scotch Whisky is an important product, both culturally and economically. Chemically, Scotch Whisky is a complex mixture, which comprises thousands of compounds, the nature of which are largely unknown. Here, we present a thorough overview of the chemistry of Scotch Whisky as observed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Eighty-five whiskies, representing the majority of Scotch Whisky produced and sold, were analyzed by untargeted high-resolution mass spectrometry. Thousands of chemical formulae were assigned for each sample based on parts-per-billion mass accuracy of FT-ICR MS spectra. For the first time, isotopic fine structure analysis was used to confirm the assignment of high molecular weight CHOS species in Scotch Whisky. The assigned spectra were compared using a number of visualization techniques, including van Krevelen diagrams, double bond equivalence (DBE) plots, as well as heteroatomic compound class distributions. Additionally, multivariate analysis, including PCA and OPLS-DA, was used to interpret the data, with key compounds identified for discriminating between types of whisky (blend or malt) or maturation wood type. FT-ICR MS analysis of Scotch Whisky was shown to be of significant potential in further understanding of the complexity of mature spirit drinks and as a tool for investigating the chemistry of the maturation processes. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13361-016-1513-y) contains supplementary material, which is available to authorized users

    Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    Get PDF
    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension

    Selective and Irreversible Inhibitors of Mosquito Acetylcholinesterases for Controlling Malaria and Other Mosquito-Borne Diseases

    Get PDF
    New insecticides are urgently needed because resistance to current insecticides allows resurgence of disease-transmitting mosquitoes while concerns for human toxicity from current compounds are growing. We previously reported the finding of a free cysteine (Cys) residue at the entrance of the active site of acetylcholinesterase (AChE) in some insects but not in mammals, birds, and fish. These insects have two AChE genes (AP and AO), and only AP-AChE carries the Cys residue. Most of these insects are disease vectors such as the African malaria mosquito (Anopheles gambiae sensu stricto) or crop pests such as aphids. Recently we reported a Cys-targeting small molecule that irreversibly inhibited all AChE activity extracted from aphids while an identical exposure caused no effect on the human AChE. Full inhibition of AChE in aphids indicates that AP-AChE contributes most of the enzymatic activity and suggests that the Cys residue might serve as a target for developing better aphicides. It is therefore worth investigating whether the Cys-targeting strategy is applicable to mosquitocides. Herein, we report that, under conditions that spare the human AChE, a methanethiosulfonate-containing molecule at 6 µM irreversibly inhibited 95% of the AChE activity extracted from An. gambiae s. str. and >80% of the activity from the yellow fever mosquito (Aedes aegypti L.) or the northern house mosquito (Culex pipiens L.) that is a vector of St. Louis encephalitis. This type of inhibition is fast (∼30 min) and due to conjugation of the inhibitor to the active-site Cys of mosquito AP-AChE, according to our observed reactivation of the methanethiosulfonate-inhibited AChE by 2-mercaptoethanol. We also note that our sulfhydryl agents partially and irreversibly inhibited the human AChE after prolonged exposure (>4 hr). This slow inhibition is due to partial enzyme denaturation by the inhibitor and/or micelles of the inhibitor, according to our studies using atomic force microscopy, circular dichroism spectroscopy, X-ray crystallography, time-resolved fluorescence spectroscopy, and liquid chromatography triple quadrupole mass spectrometry. These results support our view that the mosquito-specific Cys is a viable target for developing new mosquitocides to control disease vectors and to alleviate resistance problems with reduced toxicity toward non-target species
    corecore